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t\bslracl-The prest:'nt work uses the nonlinear. rotationalty invanant equations of lhe magneto
elasticity of anisotropic magnettlstriclive materials to provide the basic elements of nonlinear
bulk wave propagation in these materials. In particular. near- and far-field solutions (tht:' latter
being unifllrmly valid on long spatial intervals) from a harmonic source within the framework of
the nlOnomode hypothesis .Ire given using either a straightforward expansion of the magnetoacoustic
solution in smalt parameters or a more relined multiple-scale technique. A bias magnetic licld is
necessarily present and harnlllnics arc generated through alt nonlinear features with a special
attention to magnetostrictive couplings. A closed-form expression is deduced for the far-lield
solution at the first order in the smalt parameters. In the case of an elastic resonator tuned on the
lirst partial mode and placed in a hias magnetic lield. the expansion method provides the aniso
chronisrn due to rnagnctostrictive couplings at the seclll1d order. Anisochronism caused hy the
nonlinear purely elastic behaVIOr requires solVing the luerarchy of approximate houndary-value
pwhlems to higher order. In all. the work presents alt the prerequisites for a forthcoming study of
nonlinear surface magncloebstic waves and a more complete study of nonlinear vihrations of
magnctoelastic rcsonators.

l. INTRODUCTION

In a previous p,tper (Ahd-Alla and Maugin. I'JX7) we have deduced sets of nonlinear partial
ditkrential equations and accompanying boundary conditions that govern nonlinear mag
netoawustie prohlems in the bulk and at a surface and th,tt include terms up to the third
order jointly in the gradient of the displacement and the gradient of the quasi-magnetostatic
potential. This allows one to envisage nonlinearities of pure mechanical. pure magnetic and
mixed magnctoelastie origins.

It is well known that the propagation characteristics of both bulk and surface waves
in centrosyrnmetric magnetostridive materials (such as ferromagnetic polycrystalline
materials) can be utilized to build a number of signal-processing devices such as electro
magneto-acoustic transducers (so-called EMATs. Hauser et al.. I'JS I; Ristic, 19S3;
Thorn pson. I'Jg I ; Worley. I'J71 ). The lIolllillear magnetoclastie couplings have not received
much attention although ·'Iinearil.ed" magnetostriction in the presence of a bias magnetic
licld has been considered in hoth Icrromagnets (Maugin. 1'J7'Ja) and paramagnets (Maugin
and Hakmi. I'Jg4) with a view to studying magnonphonon couplings and small-amplitude
wave propagation. and magnetostriction is one of the coupling mechanisms which alford
the com:eption of delay Ii nes and transducers. However. contrary to piezoelectricity (which
is rather common but of a varying strength depending on the material) and piezomagnetism
(which is r'lre). e1eetrostriction in electrically polarizable bodies and magnetostriction in
magnetizable materials arc lIonlincar coupling phenomena. They have associated with them
a stress. or an internal strain (sec e.g. Maugin. 1'J79h). that docs not depend on the direction
of the applied lield (an electric field in the former case. a magnetic fidd in the latter) so that
it is of even order (e.g. at least quadratic). and not ruled out by restrictive symmetry
regulations. in the said field. From a rather dilferent point of view, recent works (Maugin.
19X5. 19XX; Nelson. I'J7X. 1979; Planal. I'J84) have developed to some extent the field of
nonlinear e1ectromagneto-mechanical wave propagation.

In the present work. with a view to studying the main nonlinear wave characteristics
of magnetomechanical signal processing devices (for example. resonators). we exhibit useful
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solutions of some nonlinear problems by using appro:-:.imation methods (such as in Nayfeh.
1973; Nayfeh and Mook. 1979; Whitham. 197~) such as the straightforward expansion in
a small parameter and the multiple-scale technique. Regarding the main results of this
work. one finds. as for corresponding electromechanical problems. that these two methods
essentially yield equivalent results for a short distance of propagation. while the multiple
scale technique is to be used if one wants to obtain a solution that is uniformly valid on a
long spatial interval. Theoretically. we have found that the nonlinearities obviously generate
harmonics in the magnetoacoustic field while in the case of resonators the phenomenon of
an isochronism (relative change in velocity of the fundamental frequency component) is
placed in evidence. These phenomena are very similar to those obtained in electromechanical
devices (Planat. 1984; Maugin. (985). However. there are also fundamental differences that
come from three facts: (i) the material body being centrosymmetric. the first existing
magnetoelastic coupling is of higher order than piezoelectricity for electromechanical
devices. This brings into the picture the second fact (ii) that the lowest order couplcLl
Iim:arized solution must necessarily involve a hius magnetic field. Finally. (iii) there does
not exist for magnetic processes the equivalent of grounding (i.e. imposing a potential) at
a surface anLl this. of necessity. yielLls a matching of an internal solution for the magndic
field to an external solution as soon as limiting (boundary) surfaces are involved. This is
the case for the "resonator" conliguration and this will also create some difliculties in a
forthcoming study of linear and nonlinear magnetoelastic surface waves.

The needed nonlinear magnetoacoustic equations derived in a previous paper (Ahad
Alia and Maugin. 19X7) arc given in Section 2. The linear wave equations which provide a
natural hasis (related to eigenmodes) to study all suhsequent nonlinear and coupling
phenomena arc dealt with in Section 3. Mtlfe interesting for our purpose arc the equations
ootained oy linearization ahout a hias m~lgnetic lield (Section 4). The nonlinear equations,
hut for a monomode process, arc given in Section 5. These equations that contain all types
of nonlinearities. arc first exploited for hulk waves in Section (, hy using a straightforward
expansion in small parameters. As in other lields of mathematical physics [nonlinear (tluid)
acoustics, nonlinear elasticity, nonlinear electromechanical processesl. this yields only a
ncar-field solution and this limitation is rernedieLl in Set:tion 7 hy looking for a uniformly
valid far-licld solution via a multiplc-st:alc tet:hnique. The solution obtained is close to the
celebrated Fuhini -Ghiron solution hut internal. spatially uniform stresses result from the
hias magnetic liekl involved in the zeroth-order solution. The approximation of c1assit:al
magnetostriction (ix. magnetostrietion is regarded as the only nonlinear process. nonlinear
elastic anLl purely magnetic phenomena heing L1iscarLleLl) is dealt with along the same lines
in Section X. It is shown in Sl.:ction L) that taking account of nonlinearities of all origins then
hrings only an alteration in the eoetlicients of the previous solution. Finally. the case of
clastic magnetostrictive resonators is examined in Section 10 by using a straightforward
expansion mdhod. There is exhibited a L1ekel called anisochronism which is directly
proportional to thl.: square of the bias magnetic lidLl anLl the magnetoacoustic coupling
eoclJicil.:n t.

2. EQUATIONS OF NONLINEAR MAGNETOELASTICITY

Thl.: l.:quations of motion and the equations of thl.: quasi-stationary magnetic lielLl (i.e.
in thl.: frallll.:Work of quasi-magnetostatics for acoustic frequencies) for m.lterial points X
inside a regular body occupying the region Do of three-dimensional Euclidean space in the
reference wnliguration K R ofcontinuum mechanics may be written in the following material
form (AbLl-Alb and Maugin, 1987).

(I)

and
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t'K.K = 0, ~K = -4>.K

685

(2a, b)

where we have used the convention that upper- and lower-case Latin indices refer, respec
tively, to the reference Cartesian coordinates and to the present Cartesian coordinates of
material points X. We also employ the convention that a comma followed by a (capital)
index denotes partial differentiation with respect to the reference coordinates, and repeated
indices are to be summed in agreement with Einstein's convention. The symbols PI'.'
II, = £j-XKJKi • :r j , t'K' ~K' 4J and T~, = tt+ T~i denote, respectively. the matter density
at the reference state. the elastic displacement. the nonlinear motion. the "Lagrangian"
magnetic induction, the "Lagrangian" magnetic field. the magnetostatic scalar potential
and the total Piola-Kirchhoff (matter contribution plus field contribution) nonsymmetric
stress. The nonlinear stress constitutive equation in the material obviously considered as
an insulator is obtained for T~, on a thermodynamical basis as (Abd-Alla and Maugin,
1987)

while one can show that clln (2a) takes on thc form

where we have set

(Sa)

IJ';/w,v/'(! = B KH ,IIN/'(! + ~ BK(!MNC) HI' - BMN/'(!XAH - B HAP<!X.IIN - XHNX KP6(!.11 - XHNXA(!6 MP

+ X/'\IXUC)I,JH + XKMXH.v6P(! +6.vp ( 16(!1I6 KH - 6 KI1 6(!H) + J KP ( !6 N .1I 6 QR - 0Q,IIONR)

(5d)

(5e)

)'~I..If.V/'1,J = )·n.II.v/'Q + c)(!/.J K.lIJ,Vp - 6N(! «() u 6K.II + ~op.'lc5KL)

+ IN.II(JKPJ(!L -16p (!J n ) - 6Qd~u,,6,vp - 6 LP6,vM) (Sf)

The various material cocllicients introduced have obvious tcnsorial symmctrics and they
bear the following significance. The matcrial tcnsors Cn .IIN , CKL.IINPQ and CKRMNPQAB are
the tensors of elasticity coefficients of the second, third and fourth orders, at constant
temperature and zero magnetic field. The material tensors XAB and XKR.\I,V are tensors of
magnetic susceptibilitics of the second and fourth orders at constant temperature and
vanishing strains. The material tcnsors B.IINKI. and B.II,VKl.PQ arc the tensors of coefficient·
of magnetostriction of the first and second orders (in the strain), respectively. Finally, th
symbol C) 1'./ is a translation operator (shifter) from the reference configuration KR to tl
actual configuration K, and vice versa.
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At a fixed regular (material) boundary cD" of the body equipped with unit outward
normal ofcomponents NK' the field equations (I) and (2) are complemented by the following
boundary (jump) conditions in the absence of prescribed tractions and surface currents:

[<t>] = 0

(6a)

(6b)

(6c)

where [ .. ] denotes the jump (difference between the outside and inside values) of the
enclosure. We note that

3. LINEAR EQUATIONS

The part of eqn (I) which is linear in the 111"0 field variables is

(7)

where a superimposed dot denotes partial time dillCrentiation. This is an equation of motion
for a linear anisotropic elastic body (crystal). A solution of eqn (7) may be sought in the
form of a plant.: wave travelling in the direction of unit (material) vector Awith vclodty Va'
We write

UH = b\1 exp [i(Wl- K· X)] (X)

where K = kA; k. real. reprt.:sents the wave number, (J) is the angular frequency and b is the
amplitude. Carrying (X) into (7) we obtain

(9)

This is the usual eigenvalue problem for tht.: acoustic Christo/rei tensor r IIM(A) ddined by

( 10)

Let 1Il, = II II( V,~) 1, :x = I. 2, 3, be the three eigenvalues of r 11.\/' The I~lct that CKII.\/V~ C,1f

(in Voigt's notation with:x.{J 1.2..... 6) is symmetric positive dctinite guarantees that
the three eigenvalues arc positive and, in general, distinct from each other. The polarizations
b of the associated vibrations arc orthogonal to one another. Because of the general degree
of anisotropy these vibrations, in general. do not correspond to purely transverse or purely
longitudinal (with respect to },) vibrations. The eigenvalues 1Il. arc obtained by solving

( II )

which is a cubic in m for a fixed A. The general solution of (7) is a linear combination of
the three elementary eigenmodes u'. i.e.

.I

11M = L A.II~1
.- I

\vhere the II, arc arbitrary amplitudes. Let

( 12)
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b~
I~ = ---' 7 fixed

Jb~b~'
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( 13)

denote the director cosines of the eigenmodes. The {I';7 = I. 2. 3} form a new triad of
orthonormal vectors. hence a Cartesian basis on which a general motion can be described.
In particular. each mode then is characterized by a scalar displacement It' which can be
expressed in terms of time and the curvilinear abscissa X = A' X = )'KXK , We have

It' = AIII~,/~, (no summation on 7).

Substituting from this into eqn (7) we get

"''''11 C ".. I' I 0PRL. 1I R- KR\'VL.)·.V"·K,\,II.U= .,

( 14)

(15)

This vectorial equation (three components) can be projected onto the basis {I'} on account
of the fact that

( 16)

By virtue of the very definition of an eigenmode. one obtains thus

( 17)

with

( 18)

4. THE LINEARIZED EQUATIONS

When one studies the propagation of small disturbances in elastic displacement Ii and
magnetic field ~ (with associated potential c$) superimposed on a state of spatially uniform
magnetic field H" and zero displacement. by linearization of eqns (I) and (2) one obtains
the following linear equations which resemble those of linear piezoelectricity but for the
fact that the coupling tensorial coefficients F~L.v and Ftu, are flof the same ones:

where (here the bias field H" may have any direction)

n.UN = B';.:u,... H'I.. HI.. = -¢:i

By projecting eqns (19) and (20) onto the basis {I'} of Section 3 we obtain

{lc$..u. +I Pii'u = 0

( 19)

(20)

(21)

(22)

(23)

(24)
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F-, 'F' .. I'== L J(L\;.~;I-, L (25)

(26)

We can write eqns (23) and (24) in the following form (for a fixed 1) by considering the
following scaling (L and T are characteristic length and time scales).

II == LII*.

t == Tt*.

rb ..{ == H"rb.i·

.{ == LX* I
H = H" H*. H" = IH"I (27)

so that the above equations become dimensionless. We have thus (omitting the asterisks
and with the simplified notation II, = (~IIJt. II, = (~II/(~X. x = X).

(28)

(29)

where we ha ve set

(30)

Substituting from (29) into (28) yields the unique equation

(31 )

with

(32)

where I:", may be called the magnetoacoustic coupling coeflicient (it describes the redllction
in elastic wave speed as a result of magnetostrictivc couplings--see Maugin and Hakmi,
1984).

With a boundary condition I/(x = O. t) = l./u( \ - cos wt) at the source. eqn (3\) has thc
obvious solution

II = Un(l-cos t/J). r/J == U)[-kux. k n = w/K.

5. NONLINEAR MONOMODE EQUATIONS

(33)

Projecting the nonlinear equations (\) and (4) onto the basis {I'} of Scction 3 wc
obtain

{l Hit' = m,I/~:u +L r"dl/~i 1I:.d.x + L ~'P;'J (u~{ !I:J:ll~)x + 8, (¢..{ !/J ..d ..{ +LB,,\( (P ..{(P.1 11\ ),x
II. y JJ./' .,~ t)

(34)

and

(35)

where we have set
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r'/I;- = }'~R"''iPQi..'ii'Qi'KI''M/~/~

6'/I;'J = (j~R,w"PQ~8i";'Qi'8i'Kr..,/~t~/~

Bz = B;:R\('ii..~li''ii./(IR

B'/I = B;:RJI'iPQi_"i_';'Qi'K/~1R

ii = J-lni'Ki'L

Bp = B'~L"vi'Ki.,i'L/~,
r" '" ..,. 1/1 I"
I.p;- = l·n.w.vPQ"·L"·""·Q"·K M P

i. = XAL ",;·0"i·,4·
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(36)

(37)

Therefore. the nonlinearities cause a mutual coupling between eigenmodes (case where P
and/or i' are different from 1: and p, i' and/or (j are different from 1:). as also a selFcollpling
ofeach mode (for pand/or i' = 1:. and p. y and,or J = 1:). At this point the following remark
is of importance since it will greatly simplify further considerations. The three eigenmodes
of the linear case are orthogonal and propagate with different velocities. Therefore, when
one specific mode is excited by the magnetic field (or a mechanical agent), and the other
modes correspond to eigenfrequencies which are sufficiently remote from the excited one.
the latter is preponderant and couplings with the other modes correspond to corrective
terms which may be neglected in a first approach (cf. Sugimoto, 1978: see also Maugin.
1985, p. 36). This corresponds to the working hypothesis of a monomode process. This
hypothesis is commonly considered in the case of electromechanical interactions both for
hulk waves (e.g. Planat e{ al., 1980) and surface waves (e.g. Kalyanasllndaram. 1984). In
this condition only the terms corresponding to a selected 1: = II = i' = c) in eqns (34) and
(35) ;Ire kept and. using the notation introduced for eqn (28). and omitting the superscript
1:, eqns (34) and (35) take on the following form.

[
m ( 21' 3£.\ ,)] 2/J Ii,

II" -II" I + II, + II; = ep,ep" + (ep;II,),
PH m m PH PH

and

jiep" - ii"( ep, 1/,), + ~i(ep,): - ;:"(ep,II~), = o. (38)

Equations (37) and (38) can now be expressed in dimensionless form by using the same
scaling as in eqns (27). Performing the nondimensionalization and omitting the asterisks
to lighten the notation, we write eqns (37) and (38) as

11,,-11,,(1 +2i'lI, +3e)II~) = 11,(c/>,)~+fj,(ep~lI,t (39)

and

Ip" - II!( Ip, II, t + h(lp.) ~ - i.(c/> ,II;) , = 0

where we have set (orders of magnitude are mentioned)

r
y=--=O(I)

m

. 6 I
i) = -- = 0 (I to 10 - )

m

Ii"
II! = .... = 0 ( I )

m

-(!/")!
X = !...__- = 0 (10- ~)

1/

,J." I
I. = -=- = 0 ( ).

It

It is for these orders of magnitude that 8" = 0(10- 5
). {t = 0(10- 5

) and i = 0 (10- 9
).

(40)

(41 )
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For the sake of simplicity we shall discard the last term in each of eqns (39) and (40).
obtaining thus

(42)

(43)

We assume the following boundary condition at the source (harmonic source with a single
frequency normalized to one).

II(X = 0.1) = Uu(l-cos () (44)

while. initially (i.e. H" is set along the x-axis or has an intense non-zero x-component at
least)

c/J,(:cO) = -flO = const. "Ix (i.e. Vf{" = 0).

6 SOLUTIONS BY MEANS OF A STRAIGHTFORWARD EXPANSION

(45)

In accordancc wi th thc mcthodology of thc pcrturbation mcthod of Poincare (straight
forward cxpansion in a small paramctcr). wc assumc that thc displaccmcnt componcnt II

and thc gradient of the potentiallield {P, depend on the space time propagation variahles
x and { via an expansion in power series. for instancc

(46)

and

(47)

where the small parameters (I and (1 are introduced on account of (41) as (classically
II, = 0(10 ~))

(I ::::: ,'II, ::::: 111 = 0 ( I0 ~ to 10 . 5)}

(1::::: II~II,::::: X = 0(10 ~).
(4~)

That is. (I and (1 are small parameters of the same order. i.e. (I = 0(( 1)'

We substitute from eljns (46) and (47) into eljns (42) and (43) and set separately equal
to zero the coeflieients of various powers of (I ami (1. obtaining thus the following hierarchy
of <.:oupled one-dimensional magnetoa<.:oustic problems.

• Order olle ill ( I lIlId ( 1

On account of the boundary condition (44). eqn (49) integrates at once to

1/
01 = Vo(1-cos 'f'). 'f' = {-x.

Substituting now from (51) into (50) one gets

(49)

(50)

(51 )
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With 4>'," = 0 at x = O. t = O. since 4>',01 = - H,ll). we obtain

• Order tim in (I and (~

We have the equations

and

Carrying (50) into (54) one has an equation involving only elastic displacements:

691

(52)

(53)

(54)

(55)

(56)

One seeks a solution i/ II of this equation in the form (accounting for (51) in the right-hand
side)

i/ '\\". t) = :/(x) cos 2'P + lJ(x) sin 'P + C(x)

and. by using the method of "variation of constants". under the condition that

:/'(x) cos 2'P + lJ'(x) sin 'P +C(x) = 0

we can find the spatially dependent coeflicients as

Ul~
A(x) =}' 2 x

B(x) = 21:", UoX

(57)

(58)

Then after some calculations which amount to substituting from (57) and (58) into eqn
(55) we obtain r//,~) as

(I>',~I = fJ~II'111UII{2i'UoX cos 2'P+(fJ 1 -y)UO sin 2'P

-21:",x sin 'P+dx.-2filfJz)flCOI' cos 'fI}. (59)

This can be integrated once in space with (I>~~I(O,O) = 0 to obtain eP~2). However. we need
only (59) to proceed to the next order for the clastic displacement. (1)~2) is obtained as

• Order three ill (I and (~

We have the equations

(60)

and
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ui ~l = D(x) cos 3'P +E(x) sin 3'P +F(x) cos 2'P

+C(x) sin 2'P+H(x) cos 'P+l(x) sin 'P (62)

and varying the "constants" allows one to find the spatially varying coefficients as

D(x) = - h~U~x~

E(x) = iU~(-/-16)x

F(x) = !Uo[gm(3fI~+2i'Co-i')JX

C(x) = -f.mi·U(~xz

H(x) = Uon(f.;'+Uo/)x~+ lU()()X]

lex) = -UII[f:mH(OI'(h.-2/JI/JZ)+U(~(i·~+ ~()JX

on the condition that

(63)

D'(x) cos }'(1 + £'(x) sin )'(1 + r(x) cos 2'(1 +G'(x) sin 2'(1

+ll'(x) cos '(1+!'(x) sin '(1:::: O. «(14)

We could proceed to (/l;:) and thus (1/,1 1
• and then to the next order to the price of more and

more intricate algebraic calculations. However. the computation up to the order of 1/1 ZI and
(/l; ZI is sullkient to exhibit (i) the generation of harmonics of the source signal, (ii) the fact
the /11:1 contributes to the propagating component at the original frequency. and (iii) that
the expansions obtained via the straightforward perturbation method arc not uniformly
valid in space since a growth like x" is observed for the I/(n, component. and this is physically
unsound far from the source. Therefore (46) and (47) correspond to a so-called near-fidd
solution. To obtain a solution valid far from the source (so-called 1~lr-lidd solution) one
needs to envisage a multiple-scale technique. This is discussed in the next section. Before
turning to this. some other comments arc in order.

COII/II/elll.l· Oil the II/e thodology. J-Icrein above. following previous works exemplilied
by the one of Thompson and Tiersten (1977). we have used a method of "variation of
constants", with certain constraints imposed on these, e.g. the equation that follows (57),
or cqn (64), which allow one to determine the necessary factors of trigonometric functions
in the dill and 1/ II solutions. This is also used below in Section 8. The arbitrariness of such
constraints must be noted. As a matter of L1Ct, Daher and one of the present authors (Daher
and Maugin. 1989a) have recently commented upon this aspect of the "source problem"
in acoustics. elasticity and piezoelectricity. In the elastic monomode case. an exact solution
can be obtained by using the method of characteristics (sec Maugin, 1985). For small
amplitudes this exact. but implicit. solution can be expanded yielding an explicit solution
of the type of (46). This expansion docs not exactly coincide with the result of the direct
Poincare expansion. the spatially varying coefficients of the representations of 1/1l1. 1/ 'I. etc.
being. in general. dilferent. Daher and M'lugin (1989b) have shownt that the results could
be reconciled if. inste.ld ofconstraints such as (64) one imposed a continuity or continuation
argument for the spatial derivative of the higher-order components z/') of the displacement.
The reason for this is altogether clear. The initial-boundary condition (33) is entirely
accounted for by the zr l solution. For higher order components. apart from a possible zero
value at the source (only the fundamental should be present there). we have stated no
condition. But it seems natural to assume that the components of order higher than zero

t Sec also Daher and Maugin (19~9a). The same prohkm is commented upon hy Cmtrcll <'I (/f. (19~7).
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in the stress should be zero at the source, and this we can impose in the fonn of the
"continuation" condition for x = O. t = 0:

This. indeed. in the purely elastic monomode case. gives "constants" of integration in
agreement with those obtained by expansion of the exact "characteristic" solution. Obvi
ously. the discrepancy observed is not so much important for very short travelled distance
and the qualitative behavior remains the same.

7. UNIFORMLY VALID FAR-FIELD SOLUTIO:"

We now apply a multiple-scale technique for which one classically introduces a slow
space variablt: .I' = (X and set

I/(X. tl = li(x. .1'.1), 1J, = ¢,(x.s, I).

Then a Poincare expansion is made for Ii. We note that

(65)

1/, = Ii,.

1/, = Ii, + IIi,. (66)

where ( = (! = ( ~. Then

Ii = (1Ii(O)(X• .I".f)+I;lil!l(x• .I'.t)+ ... }

IF, = -J7"+(~(F;I)(x..I'.[)+d(F;~I(x.s,t)+ .... (67)

Substituting from eqns (66) and (67) into cqns (42) and (43) wc obtain the following
hierarchy of equations.

• Order ofte in (I = (~

(68)

(69)

• Orda tll'O ill (I = (~

(70)

and

We may consider for 1/1 01a solution in the form of a right-running plane wave as

(72)

where FlOlI is an arbitrary function and .I' is a parameter. The dependence on s is specified
at the next step. We have
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Then eqn (69) yields
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(73)

(74)

Substituting from eqns (72)-(74) into eqn (70) one obtains

(75)

We shall avoid the production of secular terms through the right-hand side of this equation
by imposing that this right-hand side vanish, obtaining thus the secularity condition

If we set

i)! F,n) ?F"ll I'! FlO) t'! FIn)

tis 17'11 +}'iitl' ("II! - f."'t"(i! = O.

p=F'n,_I:""p
}'

(76)

(77)

ux y
(78)

and we can write (76) as the simplest (first-order) nonlinear equation of wave theory as

(79)

The solution surl~lcesof this equation are known as (Whitham, 1974)

(80)

where .7{' is an arbitrary function. Its expression is determined by the source condition. For
an excitation such as 1/(0, t) = Vu ( I -cos I), t > 0, eqn (80) takes on the form

(81 )

or

(82)
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(83)

where one can recognize in L s the breaking distance for shock-wave formation in nonlinear
wave theory (see Nayfeh and Mook. 1979; Beyer. 1974). we rewrite (63) as

(84)

with. for further use.

(85)

The solution (82) or (84) is implicit and. therefore. not very convenient. To find an explicit
solution one considers a Fourier series expansion

XJ

-(G(O}/Uo) = L 0" sin n'Y
"=1

with coetlicients 0" given by

Using now the transformation (83)-(85) we have

0" = ~f' sin {sin fl((- Lsin ,)(1- Lcos ,)] d(

which integwtes to (Abramovitz and Stegum, 1965)

(86)

(87)

(88)

(89)

where J. is the flth Bessel function of the first kind. Thus the explicit solution for the selected
source is given by

and thus

.. Uo ~ 2J,,(flS/Ls)
r = --_. L. -.----- cos (n'Y) +const.

n ._ 1 (ns/ La)

and. via (72) and (77)

o [~ 2J.(n.v/Ls) ]iii 1= Uo 1- L. '/L cos (n'Y) -e..(x/Ls ) .._1 (trs s)

(90)

(91)

(92)

The solution (90) or (92) is of the same type as the well known solution of Fubini-Ghiron
(1935) in nonlinear acoustics. It is built of harmonics with pseudo-periodic coefficients. The
displacement solution (92) in addition involves a term proportional to the phase or the x
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coordinate. This corresponds to a spatially uniform straint due to the presence of the bias
magnetic field and magnetomechanical couplings. If necessary. this can be translated in
terms of a constant internal stress as is the case in the magnetostriction of uniformly
magnetized bodies (see Maugin. 1979b).

8. SPECIAL CASE: CLASSICAL MAG;-';ETOSTRICTION

We next proceed to linearize eqns (I) and (2a) in terms of the elastic displacement but
not of the magnetic field. In this case we obtain the following two equations which we
shall refer to as those of classical magnetostriction (compare the fully linearized case in
Section 4):

(93)

(94)

By projection onto the orthonormal basis W: of Section 3 we have

where we have set

(HPU - L Hil(/P.t U': h = 0
'I

nt, = C,;/w.v)";'A/~/I~ = 1~1 rHH/~

rMH = CAHM.V).;V)'';

B, = /hHH.V)'H)";'A/~

ill; = B~LlI.v).,;).,;'!II~

(I = PH).!.:)'!..

(95)

(96)

(97)

Having now recourse to the monomode hypothesis. introducing dimensionless quantities.
dropping the index :t. and asterisks and using x inste'ld of X. we have the following
nondimensional system of two partial diflcrential equations [compare the system (42) and
(43)1 :

where

(9S)

(99)

80
{f 1 = = 0 (I).

fIl
( 100)

Substitution of cP" given by eqn (99) into eqn (9S) yields

(10 I)

In the sequel of this section we treat eqns (10 I) and (99) by the same methods as in the
fully nonlinear case.

t Spatially uniform strains can also appear in this type of solution for purely elastic bodies. depending on
the type of initial-boundary conditions. For these. see Cantrell ('! <II. (19M7).
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8.1. Solution by means of a straightforward expansion
We consider expansions [where the (s are defined in egns (48)]

u.(x,l) = (\ulOI+ddl)+dd2).+ ... }
c/>,(x,t) = -HI")+(2c/>~I)+dc/>~2)+ .. 0

and this results in the following hierarchy of coupled systems.

• Order one in (I and (: (with (I = 0«(:»)

c/>~~) + fJ: HI 0) 1I~~) = 0

with direct solutions in the form

dO) = Uo(l-cos 'P). 'P = (-x

for a source condition II(X = O.l) = Uo(l -cos l). By integration one Hnds

• Order tllOO ifl ( I (/1/(/ ( :

a system which has the solution

11
(1

) = A (x) sin 'P + H(x) cos 'P + C(x)

with

A(x) = '2/:,.,Uox }

H(x) = 0

C(x) = -'2/:,.,Uo

under the condition that

C(x)+A'(x) sin 'P+H'(x) cos 'P = 00

Obviously. from (108) and (106) one also obtains

and this integrates to

697

( 10'2)

( 103)

( 104)

( 105)

( (06)

( 1(7)

( 108)

( 109)

( 110)

(III)
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• Order three in £ I and £ ~
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and

( 112)

After some calculation eqn (112) becomes

By integration this yields

IP = D(x) sin 2\f1+£(x) cos 2'I'+F(x) sin \fI+G(x) cos \fI (115)

with

D(x) = 0 }
F(x) = -41:,;,(lox

G(x) = 2t:~Unx!

E(x) = - ~I;",I/!U(~x.

( 116)

This global solution up to order three in £ I and £ 1 exhibits the generation of harmonics due
uniquely to magnetoclustic couplings of the magnetostrictive type (this is certainly not very
eflicient) but the solutions obtained are not uniformly valid along the spatial axis.

8.2. Solution hy mel/us of the multiple-sca/e technit/ue
We set (t = (I = t 1)

s = lX, U(X,1) = li(x,.v,t), 1/1, (x, I) = 1$,(X,S,t) ( 117)

so that eqns (46) and (47) hold true, and then we consider the expansions (67). Now we
obtain the following hierarchy of systems.

• Order one in £ I and ( 1

(liS)

( 119)

• Order two in £ I tllld £ 1

where eqn (119) has been used to transform cqn (120). We need not consider higher orders.
The solution of eqn (118) as a right-running wave again is

(122)
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We proceed as in Section 7 but now the secularity condition (76) is replaced by

(lZ P.0} (I: F(O'
(1'1' cs -£", c'l'z ::::: 0

or. setting

we have the equation

699

(123)

(124)

(125)

which is a linear first-order partial differential equation which integrates immediately by
the method of characteristics to

G IO} ::::: ;('I'+e",s) (126)

where the function .>Y' will be specified by the source condition. For a source (44) we have
thus

GIOl
::::: Uo sin ('I'+e",s).

By integration this produces the displacement solution

Li(O} ::::: P.0l ::::: Uo[l-cos ('I' +e",s)

::::: Uo{ I-cos [t-x(l-e",)]}.

( 127)

(128)

9. REMARK ON EQUATIONS (42) AND (43)

If we keep the complete equations (42) and (43) with nonlinearities of alI origins and
usc the straightforward expansion method in terms of the small parameters, I and '2 at
order one in these parameters we shall obtain the same system as (49) and (50) while for
higher order we shall have the following.

• Order tiro ill ( I and ( 2

(129)

(130)

• Order three ill (I and (Z

This case is no more difficult to deal with than the somewhat simplified case of Section 5.
In particular we obtain
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and

while
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UfO) = Uo(l-cos 'P), 'P = t-X}
cPl,,~' = -P1H'O'UO COS 'P

cP~ll = P1HIOIUO sin 'P

u< II = A(x) cos 2'P + B(x) sin 'P + C(x)

yUa
A(x) = 2x

B(x) = PI UoHIO)'(I +2fJ1)X

C(x) = - y~aX-fJIUoHIOI'(1+2fJ1)

(\33)

( 134)

cP~~) = H IUI Uu{J 1 {[[!u(lJ 1 - ,.) + ~J sin 2'P + 2yUox cos 2'P

-{J,H"ll '(1 +2{JJx sin \"-[{I,(I +2{JJ- i]" IU1
: cos \..} (135)

which, by integration, yields

( 136)

A comparison between these results and the results (58) and (5lJ) reveals that the only
difference is in additional terms which only alter the value of some numerical coeflicients
[e.g. {/1 is replaced by {1 2+ 1/2. (l/ 2-y) replaced by (f/2-") + ().I{J 2Uu). "1.12 replaced by
("1.12)-/1,(1 +2/J 2))·

10, NONLINEAR VIBRATIONS OF RESONATORS

We now consider a medium of finite extent (length 21z) in one of its dimensions, plane
waves travelling back and forth between these two limiting surfaces (Fig. I). This may be

z
y

x

Fig, I. Elastic resonator.
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called a resonator if the vibration is adapted to the thickness 2h. We want to examine the
effects of nonlinearities on this resonance phenomenon when the end surfaces x = ±h are
free of stresses. We shall have to solve both internal (for Ixl < h) and external (Ixl > h)
problems. For Ixl > h we have a vacuum for which Maxwell's magnetostatic equations
reduce to

cPu = O. ( 137)

For Ixl < h we have eqns (39) and (40) with the last terms neglected (for a one-dimensional
monomode motion) :

( 138)

(139)

the estimates (41) holding true. We also need the boundary conditions at Ixl = h in the
same nondimension'llized form. We have N 1\ = (± I, 0, 0) at x = ±h and it is not difficult
to show that the conditions (6b) and (6c) take on the following form:

[4)~ = n.

(140)

(141 )

In.l. Treatment by means o/the strai.'lht/onmrd expansion
The travelled distance 2h is certainly small as compared to the characteristic distance

Ly introduced in previous sections. Accordingly, we need not bother with questions of
validity over long spatial intervals and it is quite suflieient to address the problem of solving
simultaneously eqns (137) through (141) by using the 1~lct that the parameters (I and (1

defined in eqns (4g) arc small and considering naive, straightforward expansions in these
small parameters assumed to be of the same order. We set thus

l/(X,t) = lldU'(x,t)+dd1)(x,I)+I;IP'(X,I)+ '"

4),(x,1) = _1/(UI+(14)~lJ(x,t)+d4)~1)(X,t)+·". (142)

Substituting from (142) into eqns (I)g)-(141) we obtain the following hierarchy ofboun
dary-value problems (in fact, matching with an external solution insofar as cP is concerned).

• Order ulle in II amlll

for Ixl < h
(143)

(144)

• Order two in (I ami (1

at Ixl = h.
( 145)

(146)

(147)
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(149)

(150)

• Order three in (I and (2

(151 )

(153 )

The solution of (143) obviously is a superposition of an incident wavc with wave number
1\ =::: I and a rcflected wave with wave number 1\ = -I. hencc

Uo
dOl = ., [cos (t-x)-cos (t+x)).

I.c.

UfO) = (Uo sin t) sin x.

This is a standing wave. The boundary condition (145) imposes that

rr rr rr 3rr 5rr
II = ("2q + 1)"2 = N "2 = "2' "2 • "2

( (55)

( 156)

where q is an integer and N = "2q + I is called the partial mode of thc elastic resonator.
Also, from (144). we get

( 157)

We look for thc field solution filii = _(p~l) for Ixl < II on account of the fact that (p~~1

satislies (157) inside the slab. Ixl < h. eqn (137) outside the slab and the jump conditions
(146) across the inh.:rfaces. Outside the slab

with

4/,~IC" = 0 for lx/ > h

(p -+ 0 as Ixl -+XJ.

( ISH)

( 159)

Equation (158) yields (p~lic'l = C J and (pll)C" = C1X+C~. but both constants C, and C~

must vanish by virtue of (159). Thus

(p~I'<'1 = o. (160)
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We recall that

Also. from (157)

which by integration gives

703

( 161)

(162)

(163)

where C 1 can be determined from the condition (146) which. on account of (138). (160)
and (161). can be rewritten as

cP~llint(x = ± /z) = O.

Conscqucntly

and

Now we can proceed to the 1/ I) solution.

10.2. Ani.WJchronism
Upon substituting (157) into egn (147) we obtain

for Ixl < /z.

( 164)

( 165)

( 166)

ul,') - u~~) = - hU~ sin 2x(1 -cos 2t) - 2cm Uo sin t sin x. (167)

This is to be integrated between -It and +/z on account of the limit conditions (149). The
solution of egn (167) obviously is the sum of a particular solution and the general solution
of the homogeneous equation. Therefore. we assume a solution in the form

dll(x.t) = A(x) cos 2t+B(x) sin 2t+C(x) sin t+D(x). ( 168)

Substituting in egn (167) we obtain a set of problems for ordinary ditferential equations
for A. B. C and D as

A"(x)+4A(x) = - ~yU~ sin lx. I-\'I < It} (169a)

A'(x) = 0 at Ixl = It (169b)

B"(x) +4B(x) = o. Ixl < It} ( 170a)

B'(x) = 0 at Ixl = It ( 170b)

C"(x) + C(x) = 21:m sin x. Ixl < It} (171 a)

C(x) = 0 at Ixl = It (171 b)

D"(x) = hUo sin 2x. Ixl < It} ( 172a)

D'(x) = 0 at Ixl = It . (l72b)
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The solution of (169a) satisfying the imposed boundary condition (169b) is obtained as

(U~ ('") . ") )A(x) = -\6 SIn _x-x cos _x

while (170a. b) is easily shown to give

B(x) = o.

Then eqn (l72a). on account of (l72b). integrates to

-'U:
D( ) {O (. ., - +., )x = - -8- SIn _."1: _x.

( 173)

( 174)

( 175)

It is clear that the term in C(x) in (168) contributes at the fundamental frequency (here
one) so that the integral of eqns (17Ia. b) provide the most interesting term for the elfect
called anisochronism. The solution of eqn (171 a) is built of a particular solution. say Cp(x).
of the complete equation. and a general solution. say C"(x). of the homogeneous equation.
The latter we take as C1i(X) = Uo sin Ax. where A is a perturbed (about one) wave number
dcllned by

A = I +()/. ( 176)

If ()A = O. the solution C"(x) of eqn (17Ia) satisfies the linear approximation. If (). # O.
then eqn (171 a) is approximately satisfied and. substituting for the total solution
('(x) = C"(x) + eli (x) in the imposed boundary condition (171 b). we obtain that ().~ satisfies
the following condition:

( 177)

But C(x) = 0 at lx/ = Iz = nl2 for the partial mode of the first order. and since ()~ is
assumed to be small we ean use the approximation cos (I + ()~)Iz ~ - (5)/ which, inserted
in eqn (177), delivers ()A as

( 178)

This small quantity is the alteration in the fundamental mode of vibrations of the resonator
resulting from the nonlinear magnetoclastic properties of the body. It varies like the square
of the bias magnetic field and is directly proportional to the magnetoacoustic coupling
coetficient. eqn (32), which usually causes a reduction in the speed of clastic waves in
magnetostrictive materials. This effect is also obvious in the solution (128). For an aniso
chronism due to nonlinear clastic properties only. one must proceed to the elastic solution
up to the order of u(!) (compare Planat, 1984; Maugin, 1985). A more involved study of
the nonlinear vibrations of magnetostrictive elastic resonators shall be given later on (Abd
Alla and Maugin. 1988).
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